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1. Introduction

Interactive epistemology. Epistemic attitudes toward sentences come in many shapes

and forms: knowledge, qualitative belief, and quantitative belief, each of which further

splits into a variety of attitudes. Since we are dealing here only with epistemic attitudes,

we will call them attitudes for short. The subjects to which epistemic attitudes are

attributed can vary and be, for example, individual human beings, firms, states, or

computers. We refer to such subjects as agents.

Of particular interest is the study of attitudes in environments that involve multi-

ple agents. This study provides insights into how agents interact, make decisions, and

cooperate or compete with each other. The study of such environments is relevant to

a range of disciplines, including psychology, economics, game theory, computer science,

sociology, biology, and political science.

The epistemic attitude of each agent in an interactive environment refers not only

to objective facts, but also to subjective facts, namely, the attitudes of other agents.

Furthermore, the attitudes of agents may also concern attitudes that refer to attitudes,

and so on. For multi-agent environments, it is of interest to consider the extent to which

one agent’s attitude is independent of another agent’s attitude. We study this question

with respect to two commonly used versions of knowledge and (qualitative) belief.

We express the idea that the attitudes of two agents are independent in terms of the

relation between descriptions of the agents’ attitudes. We first explain what these de-

scriptions are via several instances. Consider for example the following description of

Alice’s knowledge.

(1) Alice knows that the black horse won the race.

Descriptions may include several simple descriptions, such as:

(2) Either Alice knows that the black horse won the race, or Alice does

not know that the red horse won the race.

Description of an agent’s knowledge may include knowledge of the agent about another

agent’s knowledge, like the following:

(3) Alice knows that Bob does not know that the black horse won the

race.

If we replace ‘Alice knows’ with ‘Alice believes’ in these examples we get descriptions

of Alice’s belief. We can also replace ‘Alice knows’ with ‘Alice ascribes probability p’ to

obtain descriptions of Alice’s probabilistic beliefs.

Interpersonal independence. We define two conditions of independence in terms of

the relations between the descriptions of the attitudes of two agents.
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An attitude satisfies interpersonal independence if no description of the

attitude of one agent is equivalent to the description of the attitude of

another agent, except for trivial cases.1

In other words, an attitude does not satisfy interpersonal independence if there are

non-trivial descriptions of both Alice’s and Bob’s attitudes such that one description is

true, if and only if the other is true.

We can require more from independence. Not only that no two descriptions can be

equivalent, but also that no description of one agent’s attitude tells us anything about

the attitude of another agent. This leads us to the following definition.

An attitude satisfies strong interpersonal independence if no description

of the attitude of one agent implies a description of the attitude of another

agent, except for trivial cases

We now check which of the two of independence conditions formulated above are

satisfied by the attitudes of knowledge and belief. Beginning with the condition of

strong interpersonal independence, we find that:

Belief satisfies strong interpersonal independence, but knowledge does not.

To see why knowledge does not satisfy strong interpersonal independence, consider

the description of Alice’s knowledge in (1). Now, knowledge of a sentence implies the

sentence. That is, if it is true that the sentence is known, then the sentence is true.

Thus, (1) implies that the black horse won the race. But this implies in turn that Bob

cannot know the opposite, that is:

(4) Bob does not know that the black horse did not win the race.

In summary, the description of Alice’s knowledge in (1) implies the description of Bob’s

knowledge in (4).

The descriptions of belief obtained from (1) and (4) by changing ‘know’ to ‘believe’

do not have this relation of implication, because belief in a sentence does not imply the

sentence. Indeed, consider the following two descriptions of belief:

(5) Alice believes that the black horse won the race.

(6) Bob believes that the black horse did not win the race.

Obviously, one and only one of these two believed sentences is true. Yet (5) and (6) can

be both true, and therefore (5) does not imply the negation of (6). This does not yet

prove that belief satisfies strong interpersonal independence because we need to show

that no description of Alice’s belief, no matter how complicated, does not imply any

description of Bob’s belief. We show that this is indeed the case.

1By trivial cases we mean descriptions that are either true in every model of knowledge, or false

in every model. Equivalently, by the completeness theorem, the trivial cases are either theorems or

contradictions.
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A straightforward corollary is:

Belief satisfies interpersonal independence.

As knowledge does not satisfy strong interpersonal independence, the question of

whether it satisfies interpersonal independence cannot be answered so easily. Our main

result shows, however, that knowledge does satisfy interpersonal independence. We can

summarize our results:

Both knowledge and belief satisfy interpersonal independence. Only belief

satisfies strong interpersonal independence.

The formalism. We study knowledge and belief as modalities in a formal language

of modal logic as was first suggested by Hintikka (1962). For belief we use the modal

logic KD45.2 We discuss later the relation between this type of belief and probabilistic

belief. Knowledge is modeled here by the modal logic S5. This type of logic is obtained

by adding to the axioms KD45 an axiom known as the truth axiom, which says that

knowledge of a sentence implies the sentence. Some philosophical reservations concerning

the rendering of knowledge in terms of the S5 logic were raised by Hintikka (1962) and

Stalnaker (2006). Nevertheless, this model of knowledge is by far the most commonly

used by practitioners in the sciences that study interactive epistemology.

Kripke (1963) proposed semantics for various modal logics in terms of models called

Kripke structures, which consist of a set of possible worlds and accessibility relation

between them. Each sentence in the formal language is associated in each model with a

subset of worlds, considered to be the interpretation of the sentence in the model.

In the language of multi-agent modal logics there is one modality for each agent. Sim-

ilarly, the semantics for such logics has an accessibility relation for each agent. Aumann

(1976) studied multi-agent knowledge using partition models. In such a model each agent

is associated with a partition of a state space that describes the agent’s knowledge: in

each state the agent knows all the supersets of the partition element that contains the

state. Partition models are equivalent to Kripke structures for the S5 logic.

Common knowledge. To establish that knowledge satisfies interpersonal indepen-

dence, we use the concept of common knowledge in a partition model, as defined in

Aumann (1976). Common knowledge is defined by the meet partition, which is the

finest common coarsening of the agents’ partitions. A common knowledge event is any

element of the field generated by the meet partition.3 A sentence is common knowledge

in a partition model if it is interpreted as a common knowledge event. The claim that

knowledge satisfies interpersonal independence is equivalent to the following claim:

2KD45 is the acronym of the names of the four axioms that define the logic.
3Including the empty set, which we consider a common knowledge event for convenience.
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There are no sentences that are common knowledge in every model except

for the trivial ones.4

To show this we construct for any non-trivial sentence a model in which (i) the meet

contains only one set, namely the whole state space, and (ii) this sentence and its negation

are interpreted as nonempty events. Since the meet, in this case, does not contain any

proper subset that is a common knowledge event, it follows that the sentence is not

interpreted in this model as a common knowledge event.

The lack of no non-trivial sentences that are common knowledge in every model reveals

a gap between the syntax and the semantics of S5 knowledge. While common knowledge

is well defined in every model of knowledge, it is impossible to define common knowledge

syntactically in terms of the agents’ knowledge. Halpern, Samet and Segev (2009) discuss

the definability of a modality in terms of other modalities. Halpern, Samet and Segev

(2009) demonstrates another gap between syntax and semantics. They show that S5

knowledge cannot be syntactically defined in terms KD45 belief, while in every model

of KD45 belief, S5 knowledge can be defined in a unique way. The reason for this

gap is that Kripke structures have some features that are not shared by other models

of modal logic. The syntax can reflect only properties that are shared by all possible

models. Samet (2010) provides examples of models of possible worlds for S5 knowledge

that cannot be described in terms of accessibility relation and therefore are not Kripke

structures.

Probabilistic beliefs. The relation between discrete models of KD45 belief and discrete

models of probabilistic belief is summarized succinctly in Samet (2013). In every discrete

model of probabilistic belief, the restriction of the probabilistic belief to certainty, namely

belief in probability 1, is a model of KD45 belief. Conversely, every discrete model of

KD45 belief can be extended to a model of probabilistic belief. Halpern (1991) studies

this relation in logics of probabilistic belief. However, non-discrete models of probabilistic

belief require a measure-theoretic structure, while no such structure is required for non-

discrete models of KD45 belief.

A universal space for probabilistic beliefs is constructed in Mertens, Zamir (1985).

This space is the product of type spaces, one for each agent. The type space of an agent

consists of all hierarchies of the agent’s beliefs. Because of the product structure, each

type of one agent is consistent with any type of another agent. While the construction of

types in Mertens, Zamir (1985) requires the use of topology, Heifetz, Samet (1998) con-

structed the universal space using only measure-theoretic notions. Moreover, this space

is constructed in syntactic terms using sentences rather than hierarchies of beliefs. Since

a sentence that describes an agent’s probabilistic beliefs corresponds to a set of types

4See footnote 1.
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of this agent, the product structure of the universal space guarantees that probabilistic

beliefs are interpersonal independent in the sense defined here. We cannot use directly

this result to prove that KD45 belief is interpersonal independence since the construction

of the universal space requires topology or measure theory while belief does not require

it. The proof that KD45 belief is interpersonal independent is much simpler than the

construction of the universal space.

2. Preliminaries

2.1. The syntax of the logic of knowledge. We consider a logic of multi-agent

knowledge for a finite set I of individuals.5 The set of sentences SK of this logic is

defined, starting with a set A of atomic sentences, using propositional connectors, ¬, →,

∧, and ∨, and knowledge operators Ki. Formally: (i) every atomic sentence is a sentence;

(ii) if ϕ and ψ are sentences, then ¬ϕ (read, not ϕ), (ϕ→ ψ) (read, if ϕ then ψ), (ϕ∧ψ)

(read, ϕ and ψ), (ϕ ∨ ψ) (read, ϕ or ψ), are sentences; (iii) if ϕ is a sentence, then for

each i ∈ I, Kiϕ (read, i knows ϕ) is a sentence. The set of sentences Sk is the smallest

set that satisfies (i), (ii), and (iii). We denote by Ski the set of sentences that describe

i’s knowledge, that is, the sentences that are generated from the set {Kiϕ | ϕ ∈ Sk} by

the propositional connectors.

The subset of theorems in SK is defined inductively starting with a set of sentences

called axioms. The set of axioms consists of all propositional calculus tautologies and

for any i and any tow sentences ϕ and ψ, each of the following sentences:

(K) Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ);

(T) Kiϕ→ ϕ (truth axiom);

(5) ¬Kiϕ→ Ki¬Kiϕ (negative introspection).

The set of theorems is the smallest set of sentences that satisfies the following three

properties: (1) each axiom is a theorem; (2) if ϕ and ϕ → ψ are theorems then ψ is

a theorem (modus ponens); (3) if ϕ is a theorem, then for any i, Kiϕ is a theorem

(generalization). The negation of a theorem is called a contradiction. A sentence that

is not a contradiction is consistent. When ϕ → ψ is a theorem we say that ϕ logically

implies ψ and write ϕ⇒ ψ. If ϕ logically implies ψ and vice versa we say that ϕ and ψ

are logically equivalent and write ϕ⇔ ψ.

2.2. The semantics of knowledge. We use Kripke models, here models for short, as

the semantics of the logic. A model is a tuple M = (Ω, ( i)i∈I , [ · ]), where

• Ω is a set of elements called worlds or states;

• For each i,  i is a reflexive, symmetric, and transitive binary relation on Ω,

called accessibility relation;

5This logic is described in detail in Fagin, Halpern, Moses and Vardi (1995).
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• [ · ] : A → 2Ω is an interpretation function that assigns to each atomic sentences

a subset of Ω.

The interpretation of atomic sentences in the model is extended to all sentences.

Thus, for each sentence ϕ we defined a subset of Ω denoted by [ϕ]. The interpretation

is defined inductively; if [ϕ] and [ψ] are defined, then [¬ϕ] = Ω \ [ϕ]; [ϕ ∧ ψ] = [ϕ] ∩ [ψ];

[ϕ∨ψ] = [ϕ]∪ [ψ]; [ϕ→ ψ] = (Ω\ [ϕ])∪ [ψ]; and [Kiϕ] = {ω | if ω →i ω
′, then ω′ ∈ [ϕ]}.

That is, a world ω is in [Kiϕ] if ϕ is true at all the worlds accessed from ω. When ω ∈ [ϕ]

in the model M we say that ϕ is true in ωin M and write M,ω |= ϕ.

The completeness theorem states that for any sentence ϕ, ϕ is a theorem if and only

if in each model, ϕ is true in all the worlds of the model, that is, [ϕ] = Ω. It follows that

ϕ is a contradiction if and only if in every model [ϕ] = ∅. Also, ϕ is consistent if and

only if there exists a model and a world in the model where ϕ is true. By the definition

of interpretation and the completeness theorem, ϕ⇒ ψ if and only if [ϕ] ⊆ [ψ] in every

model, and ϕ⇔ ψ if and only if [ϕ] = [ψ] in every model.

2.3. The logic of belief. The set of sentences SB of this logic is defined similarly to

the set of sentences of the logic of knowledge, SK , except that the knowledge operators

Ki are replaced by belief operators Bi. The set of axioms consists of all tautologies and

for each i, ϕ, and ψ, any sentence in the following list:

(K) Bi(ϕ→ ψ)→ (Biϕ→ Biψ);

(D) Biϕ→ ¬Bi¬ϕ (consistency);

(4) Biϕ→ BiBiϕ (positive introspection);

(5) ¬Biϕ→ Bi¬Biϕ (negative introspection).

The set of theorems in SB is defined similarly to the set of theorems in SK , with the

knowledge operators Ki replaced by belief operators Bi.

It is easy to see that (D) and (4) are theorems of the logic of knowledge. Thus, the

only difference between knowledge and belief is that the former satisfies the truth axiom

and the latter does not.

2.4. The semantics of belief. A model for the logic of belief is defined like a model

of the logic of knowledge except that the properties of the accessibility relations are as

follows:  i is transitive, serial (that is, for each ω there is an ω′ such that ω  ω′), and

Euclidean (that is, if ω  i ω
′ and ω  i ω

′′, then ω′  i ω
′′). It is readily seen that if

such a relation is also reflexive, then it is an equivalence relation. The interpretation of

sentences in a model of the logic of belief is defined like the interpretation in the case of

the logic of knowledge, with Bi replacing Ki. The completeness theorem holds also for

the logic of belief.



INTERPERSONAL INDEPENDENCE 7

2.5. Replacing accessibility by subsets. There is a one-to-one mapping between

accessibility relations  i that are equivalence relations and partitions of Ω. Each such

relation i is uniquely associated with a partition Πi of Ω into equivalence classes. Define

Πi to be the partition of Ω into the equivalence classes of the accessibility relation. We

denote by Πi(ω) the element of Πi that contains ω. We can now equivalently define the

interpretation of Kiϕ is terms of Πi: [Kiϕ] = {ω | Πi(ω) ⊆ [ϕ]}. In what follows we

sometimes describe a model for the logic of knowledge as M = (Ω, (Πi)i∈I , [ · ]) where

the elements of the partitions Πi are the equivalence classes of  i.

The definition of belief models in terms of subsets rather than accessibility relations

is done as follows. There is a one-to-one mapping of accessibility relations  i that are

transitive, serial, and Euclidean onto pairs (Πi,Σi) with the following properties:

• Πi is a partition of Ω;

• Σi is a family of non-empty sets, called supports, such that each element of Πi

contains exactly one support.

Starting with such a relation  i, denote by S the subset of worlds in Ω that are

accessible from some world. This set has a partition Σi such that for each σ ∈ Σi all the

worlds in σ are accessible from each other but do not accesses any world out of σ. For

σ ∈ Σi let π(σ) be the set of worlds that access worlds in σ. Obviously, σ ⊆ π(σ) and

moreover, each world in π(σ) \σ accesses all the worlds in σ and only these worlds. The

family of sets π(σ) forms a partition Πi of Ω. Starting with a pair (Πi,Σi) as described

above we can easily construct the unique transitive, serial, and Euclidean accessibility

relation that gives rise to the pair. We denote by Πi(ω) the element of Πi that contains

ω, and by Σi(ω) the element in Σi contained in Πi(ω). We can equivalently redefine Bi

in terms of Σi as [Biϕ] = {ω | Σi(ω) ⊆ [ϕ]}. In what follows we sometimes describe

a model for the logic of belief as M = (Ω, (Πi,Σi)i∈I , [ · ]), where the elements of the

partitions Πi are the equivalence classes of  i.

Claim 1. If ϕ ∈ SKi (ϕ ∈ SBi ) then in every model, [ϕ] is a union of elements of Πi.

By definition, for each sentence Kiϕ, [Kiϕ] is a union of elements of Πi. Moreover,

if ϕ and ψ are sentences such that in each model, [ϕ] and [ψ] are unions of elements

of Πi, then [¬ϕ] and [ϕ ∪ ψ] have also this property, and similarly for the rest of the

connectors. Thus this property holds for all the descriptions of i’s knowledge. The proof

for knowledge is similar.

3. Interpersonal independence

Our main results concern the relationship between the knowledge or belief of different

agents. We show that knowledge is interpersonal independent in the sense that a de-

scription of the knowledge of one agent cannot serve as a description of the knowledge of
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another agent. Formally, we claim that, for j 6= i, a sentence in SKi cannot be logically

equivalent to a sentence in SKj . This claim requires fine tuning because sentences that

are vacuous descriptions of knowledge and belief should be excluded. A sentence is a

vacuous description of knowledge or belief if it is either a theorem, or a contradiction.

Thus, if we take sentences ϕ in SKi and ψ in SKj that are theorems, then, of course, they

are logically equivalent. This is also the case when we take two such sentences that are

contradictory. Thus, interpersonal independence of knowledge claims that if a sentence

in SKi is logically equivalent to a sentence in SKj , for i 6= j, then these sentences are

vacuous descriptions of knowledge. We show likewise that belief is also interpersonal

independent. In what follows we assume for simplicity that I = {1, 2}.

Theorem 1. (Interpersonal independence of knowledge)

If ϕ1 ∈ SK1 , ϕ2 ∈ SK2 and ϕ1 ⇔ ϕ2, then either both sentences are theorems, or both are

contradictions.

The same result holds also for belief.

Theorem 2. (Interpersonal independence of belief)

If ϕ1 ∈ SB1 , ϕ2 ∈ SB2 and ϕ1 ⇔ ϕ2 , then either both sentences are theorems, or both are

contradictions.

Interestingly, the proofs of the two theorems are fundamentally distinct. The proof

of Theorem 2 relies on a stronger condition of interpersonal independence, which is

satisfied by belief but not by knowledge. Specifically, this stronger form of independence

requires not only that two agents’ belief descriptions cannot be logically equivalent, but

even that one cannot logically imply the other. Since knowledge does not satisfy strong

interpersonal independence, the proof of Theorem 1 requires a different approach which

we describe later. But first, we formally state that belief satisfies strong interpersonal

independence.

Theorem 3. (Strong interpersonal independence of belief)

If ϕ1 ∈ SB1 , ϕ2 ∈ SB2 and ϕ1 ⇒ ϕ2 then either ϕ1 is a contradiction or ϕ2 is a theorem.

Theorem 3 easily implies Theorem 2. If ϕ1 ∈ SB1 , ϕ2 ∈ SB2 and ϕ1 ⇔ ϕ2, then

ϕ1 ⇒ ϕ2. Thus, by Theorem 3 either ϕ1 is a contradiction, and therefore, as ϕ1 ⇔ ϕ2 it

follows that ϕ2 is also a contradiction, or else, ϕ2 is a theorem, and then again, ϕ1 is a

theorem too.

Obviously, knowledge does not have strong interpersonal independence. The culprit

is the truth axiom. Consider, for instance, the two sentences, K1p and ¬K2¬p for some

atomic sentence p. Obviously, the first sentence is not a contradiction and the second

is not a theorem. Yet, by the truth axiom, K1p ⇒ p, and also p ⇒ ¬K2¬p. Thus, by
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the transitivity of logical implication, K1p ⇒ ¬K2¬p. Hence, a sentence that describes

1’s knowledge implies a certain sentence that describes 2’s knowledge. Thus, strong

interpersonal independence does not hold for knowledge.

In the next section, we provide a short proof of Theorem 3. In the section that follows

we give the more elaborate proof of Theorem 1.

4. Strong interpersonal independence of belief

To prove Theorem 3 we use the following proposition which is a special case of the

theorem.

Proposition 1. If B1ϕ
1 and B2ϕ

2 are consistent sentences in SB, then B1ϕ
1 ∧ B2ϕ

2

is consistent.

Proof: If B1ϕ
1 and B2ϕ

2 are consistent, then for k = 1, 2 there is a model Mk =

(Ωk, ( k
i )i=1,2, [ · ]k) and a state ωk ∈ Ωk, such that ωk ∈ [Bkϕ

k]Mk . We can assume

that Ω1 ∩ Ω2 = ∅.
We construct a model M = (Ω, ( i)i=1,2, [ · ]) by taking the union of the models M1

and M2 and adding a state ω0. We will show that in M , ω0 ∈ B1ϕ
1∧B2ϕ

2, which proves

the consistency of B1ϕ
1 ∧B2ϕ

2.

We set Ω = {ω0}∪Ω1∪Ω2, where ω0 /∈ Ω1∪Ω2. The restriction of ( i) for i = 1, 2 to

Ωk, k = 1, 2 is  k
i . For ω0 we set ω0  1 ω when ω ∈ Σ1

1(ω1) – the support at ω1 in the

model M1, and ω0  2 ω when ω ∈ Σ2
2(ω2). Finally, we set [ · ] = [ · ]1 ∪ [ · ]2. It is easy

to see that  i, for i = 1, 2 is serial, transitive, and Euclidean, and thus M is a model of

belief.

We now show that for any sentence ϕ, [ϕ] ∩ (Ω1 ∪ Ω2) = [ϕ]M1 ∪ [ϕ]M2 . For ϕ ∈ A
this follows from the definition of [ · ]. Suppose that ϕ and ψ satisfy this equality. Then,

[ϕ∪ψ]∩(Ω1∪Ω2) = ([ϕ]∩(Ω1∪Ω2))∪([η]∩(Ω1∪Ω2)) = ([ϕ]M1∪[ϕ]M2)∪([ψ]M1∪[ψ]M2) =

[ϕ∪ψ]M1∪[ϕ∪ψ]M2 . Also, [¬ϕ]∩(Ω1∪Ω2) = (Ω1∪Ω2)\[ϕ] = (Ω1\[ϕ]M1)∪(Ω2\[ϕ]M2) =

[¬ϕ]M1 ∪ [¬ϕ]M2 . Finally, as for i = 1, 2,  i coincides with  1
i on Ω1 and with  2

i on

Ω2, it follows that [Biϕ] ∩ (Ω1 ∪ Ω2) = ([Biϕ] ∩ Ω1) ∪ ([Biϕ] ∩ Ω2) for i = 1, 2.

Since ω1 ∈ [B1ϕ
1]M1 and ω2 ∈ [B2ϕ

2]M2 it follows that ω1 ∈ [B1ϕ
1] and ω2 ∈ [B2ϕ

2].

Thus, Σ1(ω1) ⊆ [ϕ1] and Σ2(ω2) ⊆ [ϕ2]. As Σ1(ω0) = Σ1(ω1) and Σ2(ω0) = Σ2(ω2) we

conclude that ω0 ∈ [B1ϕ
1] and ω0 ∈ [B2ϕ

2]. Hence, ω0 ∈ [B1ϕ
1 ∧B2ϕ

2].

We need also a simple claim that helps to extend Proposition 1 to all sentences in SBi .

Claim 2. If ϕ ∈ SBi , then ϕ⇔ Bi(ϕ). If ϕ ∈ SKi , then ϕ⇔ Ki(ϕ)

Proof: By Claim 1, if ϕ ∈ SBi , then in each model, [ϕ] is a union of elements of Πi. By

definition, if [ϕ] is a union of elements of Πi then [ϕ] = [Biϕ]. Since this equality holds

in any model, it follows that ϕ⇔ Bi(ϕ). The proof for knowledge is similar.
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Proof of Theorem 3: If ϕ1 is not a contradiction and ϕ2 is not a theorem, then ϕ1 and

¬ϕ2 are consistent. Since ϕ1 ∈ SB1 and ¬ϕ2 ∈ SB2 , it follows by Claim 2 that ϕ1 ⇔ B1ϕ
1

and ¬ϕ2 ⇔ B2¬ϕ2. Therefore, B1ϕ
1 and B2¬ϕ2 are consistent. Hence, by Proposition

1, B1ϕ
1∧B2¬ϕ2 is consistent. This shows, again by Claim 2, that ϕ1∧¬ϕ2 is consistent

and thus ϕ1 does not logically imply ϕ2.

5. Interpersonal independence of knowledge

The proof of the interpersonal independence of belief cannot work for knowledge, as

knowledge does not have the property of strong interpersonal independence. We prove

Theorem 1 using the following result, which involves only one sentence rather than two

sentences as in Theorem 1.

Theorem 4. If ϕ ⇒ K1(ϕ) and ϕ ⇒ K2(ϕ), then ϕ is either a contradiction or a

theorem.

Proof of Theorem 1: Assume that (a) ϕ1 ∈ SK1 , (b) ϕ2 ∈ SK2 , and (c) ϕ1 ⇔ ϕ2. Then

from (a) and (b) we conclude, by Claim 2, that (d)ϕ1 ⇔ K1ϕ
1 and (e)ϕ2 ⇔ K2ϕ

2. By

(c) and the definition of interpretation, it follows that (f) K2ϕ
1 ⇔ K2ϕ

2. Using (c),

(e), and (f), we infer (g) ϕ1 ⇔ K2ϕ
1. Applying Theorem 4 to ϕ1, using (d) and (g), we

conclude that ϕ1 is either a contradiction, and thus by (c), ϕ2 is also a contradiction, or

ϕ1 is a theorem, and therefore by (c), ϕ2 is also a theorem.

We rephrase Theorem 4 in terms of common knowledge. Following Aumann (1976),

we define in a partition model the common knowledge partition Π to be the meet of the

partitions Π1 and Π2. That is, Π is the finest partition among the partitions that are

coarser than both Π1 and Π2. Alternatively, let F1 and F2 be the fields generated by

the elements of Π1 and Π2, respectively. Then F = F1 ∩F2 is a field and it is generated

by the meet partition Π. Thus, each element of F is a union of elements of each of the

partitions Π1 and Π2. As Π is included in F , this statement applies also to elements in

Π. We call an element of F , a common knowledge event.6 If a non-empty set Ω′ ⊆ Ω is a

common knowledge event, then M ′ = (Ω′, (Π′i)i∈I , [ · ]′) is a knowledge model, where Π′i
is the set of elements in Πi that are contained in Ω′, and [ · ]′ = [ · ] ∩ Ω′.

Common knowledge events can be described also in terms of the accessibility relations,

as follows. A path of length n ≥ 0 from ω to ω′ is a sequence (ωk)nk=0, such that ω0 = ω,

ωn = ω′, and for each k < n, ωk  i ωk+1 for some i. Denote by  the transitive closure

of the accessibility relations  1 and  2. That is, ω  ω′ when there is a path from ω

to ω′. The relation  is reflexive, symmetric, and transitive, i.e., it is an equivalence

relation. We call the common knowledge accessibility relation for the following reason.

6Thus, the empty set is considered also as a common knowledge event.
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Claim 3. The partition of Ω into the equivalence classes of  is the common knowledge

partition, that is the meet partition.

Proof: An event E is a union of equivalence classes of if and only if E is closed under

 . That is, if ω ∈ E and ω  ω′, then ω′ ∈ E. This condition holds if and only if E

is closed with respect to both  1 and  2. This latter condition holds if and only if for

each ω ∈ E and i, Πi(ω) ⊆ E, which means that E is a union of elements of the meet.

Note that the accessibility relation defines a directed graph where the set of vertices

is Ω and (ω, ω′) is an edge if ω  ω′. The meet is the partition of Ω into the maximally

connected subsets of vertices of this graph. We therefore say that the model is connected

when the meet is {Ω}.

Claim 4. The logical implications ϕ ⇒ K1ϕ and ϕ ⇒ K2ϕ hold if and only if [ϕ] is a

common knowledge event in each model.

Proof: Note that by the truth axioms, the two implications hold if and only if ϕ⇔ K1ϕ

and ϕ⇔ K2ϕ. By the definition of the interpretation of sentences Kiψ, [K1ϕ] is a union

of elements of Π1 and [K2ϕ] is a union of elements of Π2 in each model. If ϕ⇔ K1ϕ and

ϕ ⇔ K2ϕ, then [ϕ] is a union of elements of each of the partitions Π1 and Π2 in each

model, and hence it is a common knowledge event in every model. Conversely, if [ϕ] is

a union of elements of each of the partitions Π1 and Π2, then [ϕ] = [K1ϕ] = [K1ϕ]. If

this holds for every model, then ϕ⇔ K1ϕ and ϕ⇔ K2ϕ.

We rephrase Theorem 4 in terms of common knowledge. First, we write the theorem in

contrapositive form. The antecedent is described in the semantic conditions for a sentence

to be a contradiction or a theorem. The consequence is replaced by its equivalent form

in Claim 4.

Theorem 4. If there is a model in which [ϕ] 6= ∅ and a model in which [¬ϕ] 6= ∅, then

there exists a model in which [ϕ] is not a common knowledge event.

We outline the proof plan.

(1) We use  to define a metric on the state space of a model.

(2) It is shown that the truth of a sentence at a given state ω in a model depends

only on the set of states close to ω, in terms of the metric.

(3) We introduce a technique of gluing two models at two elements of the partitions

of the models to create a bigger model.

(4) By gluing a model to its isomorphic image, we show that if ϕ is true in some

state in a model, then there exists a bigger, in terms of the metric, connected

model, where ϕ is true at some state of the model.

(5) Using (3) we take two big connected models M1 and M2, where ϕ is true in some

state in ω1 in M1 and ¬ϕ is true in some ω2 in M2.
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(6) We glue M1 and M2 at some partition elements which are far from ω1 and ω2.

By (2), ϕ is still true at ω1 and ¬ϕ is true at ω2. The resulting glued model M is

connected. In M , [ϕ] is a non-empty proper subset of the state space, and since

the state space is the only common knowledge event in M , [ϕ] is not a common

knowledge event.

The metric. We define a metric d on Ω by letting d(ω, ω′) be the length of the shortest

path from ω to ω′. That is, d(ω, ω′) = n if there is a path of length n from ω to

ω′ and the length of any other path from ω to ω′ is at least n; and d(ω, ω′) = ∞
if there is no path connecting ω to ω′. The ball of radius n around ω is defined as

B(ω, n) = {ω′ | d(ω, ω′) ≤ n}.

Claim 5. For n ≥ 1, B(ω, n) =
⋃

i=1,2

⋃
ω′∈B(ω,n−1) Πi(ω

′).

Proof: Suppose that ω′ ∈ B(ω, n − 1) and ω̄ ∈ Πi(ω
′). Then, d(ω̄, ω) ≤ d(ω̄, ω′) +

d(ω′, ω) ≤ 1 + (n− 1) = n and hence ω̄ ∈ B(ω, n). Conversely, if ω̄ ∈ B(ω, n), then there

exist i and ω′ such that ω′  i ω̄ and d(ω, ω′) ≤ n−1. Thus, for a world ω′ ∈ B(ω, n−1),

ω̄ ∈ Πi(ω
′).

We now formalize the idea expressed in point (2) of the proof plan by showing that the

truth of a sentence ϕ at a world ω depends only on a certain ball centered at ω. First, we

define the restriction of a model to a ball. For a state ω in model M = (Ω, (Πi)i∈I , [ · ])
and n ≥ 0 we define the restriction of M to the ball B(ω, n) to be the model M(ω, n) :=

(B(ω, n), (Π′i)i∈I , [ · ]′), where B(ω, n) is the set of states; for each state ω′ ∈ B(ω, n),

Π′i(ω
′) = Πi(ω

′) ∩B(ω, n); and for each p ∈ A, [p]′ = [p] ∩B(ω, n).

The depth of a sentence is defined recursively as follows: for an atomic sentence p,

depth(p) = 0; for a negation ¬ϕ, depth(¬ϕ) = depth(ϕ); for a conjunction ϕ ∧ ϕ′,
depth(ϕ∧ϕ′) = max(depth(ϕ), depth(ϕ′)); and for the sentence Ki(ϕ), depth(Ki(ϕ)) =

depth(ϕ) + 1. It turns out that the truth of a sentence ϕ at a given world ω in a model

M is determined by its truth at the same ω in the model M(ω, n), where n is the depth

of ϕ.

We state this formally in the following proposition.7

Proposition 2. Let ϕ be a sentence of depth n. Then M,ω |= ϕ if and only if

M(ω, n), ω |= ϕ.8

Proof: We prove by induction on n. For n = 0, B(ω, 0) = {ω}. By the definition of

M(ω, 0), for any atomic sentence p, M,ω |= p if and only if M(ω, 0), ω |= p. Since any

sentence ϕ of depth 0 is generated by atomic sentences using propositional connectors,

the proposition holds if and only if M(ω, 0), ω |= ϕ.

7A similar result for logics with one modality only is stated in Nguyen (2000).
8As defined above, M,ω |= ϕ means that ϕ is true at ω in the model M .
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Suppose that we proved the claim for n− 1 ≥ 0. Let ϕ be of depth n and fix a state

ω0 in the model M . We need to show that

(1) M,ω0 |= ϕ if and only if M(ω0, n), ω0 |= ϕ.

To evaluate the truth of ϕ at ω0 in M we need to know the truth at ω0 of atomic

sentences and sentences of the form Kiψ for sentences ψ of degree n − 1. For this we

need to know the truth of such ψ’s in states in Πi(ω0). Similarly, for the truth of ϕ at

ω0 in the model M(ω0, n) with Π′i(ω0) instead of Πi(ω0). But by Claim 5, for i = 1, 2,

Πi(ω0) = Π′i(ω0). Thus, it is enough to show that for i = 1, 2, for any state ω ∈ Πi(ω0)

and ψ of depth n− 1,

(2) M,ω |= ψ if and only if M(ω0, n), ω |= ψ.

By the induction hypothesis,

(3) M,ω |= ψ if and only if M(ω, n− 1), ω |= ψ.

Thus, it is enough to show that

(4) M(ω0, n), ω |= ψ if and only if M(ω, n− 1), ω |= ψ.

Since d(ω0, ω) ≤ 1, it follows that B(ω, n − 1) ⊆ B(ω0, n). Let M(ω0, n)(ω, n − 1) =

(B(ω, n− 1), (Π′′i )i∈I , [ · ]′′) be the restriction of M(ω0, n) to M(ω, n− 1).

Again, by the induction hypothesis,

(5) M(ω0, n), ω |= ψ if and only if M(ω0, n)(ω, n− 1), ω |= ψ.

We complete the proof by showing that the RHS of (4) holds if and only if the RHS of (5)

holds. We do it by showing that M(ω0, n)(ω, n− 1) = M(ω, n− 1). Let M(ω, n− 1) =

(B(ω, n−1), (Π′′′i )i∈I , [ · ]′′′).9 For every ω′ ∈ B(ω, n−1), Π′′′i (ω′) = Πi(ω
′)∩B(ω, n−1) =

Πi(ω
′)∩B(ω0, n)∩B(ω, n−1) = Π′i(ω

′)∩B(ω, n−1) = Π′′i (ω′). The proof that [p]′′′ = [p]′′

for any atomic sentence p, is similar.

Constructing big connected models. In the sequel, we create a new model M by

combining two disjoint models, M1 and M2, in a process called gluing. Here is how it

works.

Let M1 = (Ω1, (Π1
i )i∈I , [ · ]1) and M2 = (Ω2, (Π2

i )i∈I , [ · ]2) be two models with Ω1 ∩
Ω2 = ∅. Fix i and let π1 ∈ Π1

i and π2 ∈ Π2
i . The gluing of M1 and M2 at π1 and π2

is the model M = (Ω, (Πi)i∈I , [ · ]) defined as follows: Ω = Ω1 ∪ Ω2; [ · ] = [ · ]1 ∪ [ · ]2; for

j 6= i, Πj = Π1
j ∪Π2

j : and finally, Πi = (Π1
i \ {π1}) ∪ (Π2

i \ {π2}) ∪ {π1 ∪ π2}.
In the following proposition, we state and prove formally that the shortest path in M

from ω1 ∈ Ω1 to ω2 ∈ Ω2 crosses π1 ∪ π2 only once.

9To avoid confusion, we recall that we use Π,Π′,Π′′ and Π′′′ to denote the partitions in the models

M,M(ω0, n),M(ω0, n)(ω, n− 1) and M(ω, n− 1), respectively.
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Proposition 3. Let ω1 ∈ Ω1, ω2 ∈ Ω2, and let (ωk)nk=0 be a shortest path from ω1 to ω2

in the model M . Then, there exists ` such that (ωk)`k=0 ⊆ Ω1 and (ωk)nk=`+1 ⊆ Ω2, and

thus ω` ∈ π1 and ω`+1 ∈ π2.

Proof: By definition, ω0 = ω1 ∈ Ω1. Thus, `, the largest index such that (ωk)`k=0 ⊆ Ω1

is well defined. Similarly, ωn = ω2 ∈ Ω2. Thus, m, the smallest index such that

(ωk)nk=m ⊆ Ω2 is well defined. Obviously, m > `. By definition, ω`+1 ∈ Ω2. Thus,

ω` ∈ π1 and ω`+1 ∈ π2. Similarly, ωm−1 ∈ Ω1 and therefore ωm−1 ∈ π1 and ωm ∈ π2. It

is impossible that m > ` + 1, because then, the segment of the path, which starts with

ω` and ends at Ωm contains at least three worlds, and can be replaced by (ω`, ωm) which

contains only two worlds, and thus contradicts the assumption that n is the length of a

shortest path from ω1 to ω2. Consequently, ωm = ω`+1.

Next, we consider the gluing of two disjoint models that have the same structure.

Formally, the models M1 and M2 are isomorphic if there is a bijection f : Ω1 → Ω2 that

preserves the partitions and the assignment of parameters to state. That is, for any ω,

f(Π1
i (ω)) = Π2

i (f(ω)), and for any p ∈ A, f([p]1) = [p]2. The isomorphism of the two

glued models guarantees that the truth of a sentence in one of the models is preserved

in the glued model, as stated in the following proposition.

Proposition 4. Let M be the gluing of two isomorphic models M1 and M2, with a

bijection f , at π ∈ Πi and f(π). Then for any ϕ, [ϕ] = [ϕ]1 ∪ [ϕ]2. In other words, ϕ is

true in M at a state ω if and only if it is true at ω in the model M j where ω ∈ Ωj.

Proof: The claim holds for atomic sentences by definition of [ · ]. If it holds for ϕ then

[¬ϕ] = ¬[ϕ] = ¬[ϕ]1 ∩ ¬[ϕ]2 = (Ω2 ∪ (Ω1 \ [ϕ]1)) ∩ (Ω1 ∪ (Ω2 \ [ϕ]2)) = (Ω1 \ [ϕ]1) ∪
(Ω2 \ [ϕ]2) = [¬ϕ]1 ∪ [¬ϕ2]. If the claim holds for ϕ and η, then [ϕ ∪ η] = [ϕ] ∪ [η] =

([ϕ]1 ∪ [ϕ]2) ∪ ([η]1 ∪ [η]2) = [ϕ ∪ η]1 ∪ [ϕ ∪ η]2. Suppose the claim holds for ϕ and

consider j 6= i. Then [Kjϕ] is the union of all the sets in Πj included in [ϕ]. Since

Πj = Π1
j ∪ Π2

j , and since [ϕ] = [ϕ]1 ∪ [ϕ]2, it follows that this union is the union of

the elements of Π1
j contained in [ϕ]1 and the elements of Π2

j contained in [ϕ]2. Thus,

[Kjϕ] = [Kjϕ]1 ∪ [Kjϕ]2. Next, [Kiϕ] is a union of the sets in Πi that are contained in

[ϕ]. If π ∪ f(π) is not contained in [ϕ] then [Kiϕ] = [Kiϕ]1 ∪ [Kiϕ]2, as in the case of

Kjϕ. If, otherwise, π ∪ f(π) is contained in [ϕ], then π is contained in [ϕ]1 and f(π) is

contained in [ϕ]2. This implies again that [Kiϕ] = [Kiϕ]1 ∪ [Kiϕ]2.

We now prove the following proposition for the gluing of two isomorphic models.

Proposition 5. Let ϕ be a sentence that is not a contradiction. Then for each n ≥ 0,

there exists a connected model M with states ω and ω′ such that ω ∈ [ϕ], and d(ω, ω′) > n.

Proof: Let M1 be a model with a state ω such that ω ∈ [ϕ]. Since Π1(ω) can be

considered as a model in which ϕ is true at ω, we assume, without loss of generality,
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that Π1 = {Ω1}. If B(ω, n) 6= Ω1 for all n, we are done. Otherwise, let B(ω, n) = Ω1 for

some n. Let m be the least number for which this equality holds. We show that we can

find a model M such that B(ω,m) 6= Ω.

Assume first that m ≥ 2. By the definition of m, there exists a state ω̄ ∈ Ω1 such

that d(ω, ω̄) = m. Let π = Πi(ω̄) for some i. Let M2 be a model isomorphic to M1 by

bijection f , and M be a gluing of M1 and M2 at π and f(π). By Proposition 4, in the

model M , ϕ is true at ω.

We show that in M , d(ω, f(ω)) > m. Let (ωk)nk=0 be the shortest path from ω to f(ω).

By proposition 3, there exists ` such that ω` ∈ π and ω`+1 ∈ f(π). Since d is a metric,

d(ω, ω`) ≥ d(ω, ω̄) − d(ω`, ω̄) = m − 1. Symmetrically, d(f(ω), ω`+1) ≥ d(f(ω), f(ω̄)) −
d(ω`+1), f(ω̄)) = m − 1. Thus, d(ω, f(ω)) ≥ d(ω, ω`) + d(ω`, ω`+1) + d(ω`+1, f(ω)) =

(m− 1) + 1 + (m− 1) = 2m− 1 > m.

Obviously, this proof does not work for m = 0 and m = 1. For m = 0, B(ω, 0) = Ω1

and thus Ω1 = {ω}. We define M to be the gluing of M1 and an isomorphic model M2 at,

say, π = Π1(ω) and f(π). Clearly, in M , B(ω, 0) = {ω} 6= Ω. For m = 1, B(ω, 1) = Ω1,

which means that Πi(ω) = Ω1 for at least one agent i. Suppose that Π1(ω) = Ω1, but

Π2(ω) 6= Ω1. Then, there exists ω̄ such that ω /∈ Π2(ω̄). Take a model M2 isomorphic

under f to M1 and let M be the gluing of M1 and M2 at Π2(ω̄) and f(Π2(ω̄)). The

shortest path from ω to f(ω) must include two worlds, ω′ ∈ Π2(ω̄) and ω′′ ∈ f(Π2(ω̄)).

Since ω 6= ω′, it follows that d(ω, ω′) = 1. Symmetrically, d(f(ω), ω′′) = 1. Thus,

d(ω, f(ω)) = 3.

If Π1(ω) = Π2(ω) = Ω1, we glue Ω1 with an isomorphic Ω2 at Π1(ω) and f(Π1(ω)). In

this model still B(ω, 1) = Ω, but Π2(ω) 6= Ω, and this is the case we dealt with above.

Note that since M1 and M2 are connected, so is M .

Proof of Theorem 4: Let ϕ be a sentence of depth n. Suppose that there exists a

model M1 = (Ω1, (Π1
i )i∈I , [ · ]1) and ω1 ∈ Ω1 such that M1, ω1 |= ϕ. Suppose further,

that there exists a model M2 = (Ω2, (Π2
i )i∈I , [ · ]2) and ω2 ∈ Ω2 such that M2, ω2 |= ¬ϕ.

By Proposition 5, we can assume that M1 and M2 are connected, and for i = 1, 2 there

is a state ω̂i ∈ Ωi, such that di(ωi, ω̂i) ≥ n+ 2, where di is the metric in the model M i.

We can further assume that Ω1 ∩ Ω2 = ∅.
Let M be the model which is the gluing of M1 and M2 at π1 = Π1

i (ω̂
1) and π2 =

Π2
i (ω̂

2). Since M1 and M2 are connected, M is also connected. We show now that in

M , [ϕ] is not a common knowledge event, completing the proof of the theorem.

We denote by Bi balls in the model M i. For any ω′ ∈ π1, d1(ω1, ω′) ≥ d1(ω1, ω̂1) −
d1(ω′, ω̂1) ≥ (n + 2) − 1 = n + 1. If ω ∈ B1(ω1, n − 1) and ω′ ∈ π1, then d1(ω′, ω) ≥
d1(ω′, ω1) − d1(ω, ω1) ≥ (n + 1) − (n − 1) = 2. Since this is true for every ω′ ∈ π1, it

follows that Π1
i (ω) 6= π1 for every ω ∈ B1(ω1, n− 1).
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By the definition of the partitions Πi in M and Claim 5, B(ω1, n) = B1(ω1, n).

Furthermore, M(ω1, n), the restriction of M to B(ω1, n), and M1(ω1, n), the restriction

of M1 to B1(ω1, n), are the same model. As M1, ω1 |= ϕ, Proposition 2 implies that

M1(ω1, n), ω1 |= ϕ, and thus M(ω1, n), ω1 |= ϕ. By the same proposition, M,ω1 |= ϕ.

By similar arguments we conclude that M,ω2 |= ¬ϕ. Therefore, ∅ ( [ϕ] ( Ω in M .

Since M is connected, Ω does not contain a proper subset which is common knowledge,

implying that [ϕ] is not a common knowledge event in M , as desired.
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